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Abstract

Silks are naturally occurring polymers that have been used clinically as sutures for centuries. When naturally extruded from insects or

worms, silk is composed of a filament core protein, termed fibroin, and a glue-like coating consisting of sericin proteins. In recent years,

silk fibroin has been increasingly studied for new biomedical applications due to the biocompatibility, slow degradability and remarkable

mechanical properties of the material. In addition, the ability to now control molecular structure and morphology through versatile

processability and surface modification options have expanded the utility for this protein in a range of biomaterial and tissue-engineering

applications. Silk fibroin in various formats (films, fibers, nets, meshes, membranes, yarns, and sponges) has been shown to support stem

cell adhesion, proliferation, and differentiation in vitro and promote tissue repair in vivo. In particular, stem cell-based tissue engineering

using 3D silk fibroin scaffolds has expanded the use of silk-based biomaterials as promising scaffolds for engineering a range of skeletal

tissues like bone, ligament, and cartilage, as well as connective tissues like skin. To date fibroin from Bombyx mori silkworm has been the

dominant source for silk-based biomaterials studied. However, silk fibroins from spiders and those formed via genetic engineering or the

modification of native silk fibroin sequence chemistries are beginning to provide new options to further expand the utility of silk fibroin-

based materials for medical applications.

r 2006 Elsevier Ltd. All rights reserved.
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1. Silk—structure and properties

Silks are naturally occurring protein polymers produced
by a wide variety of insects and spiders [1–3]. In nature
silks exhibit diverse structures and functions that are
evolutionally tailored to the environment inhabited by the
silk-producing animals [4,5]. The diverse functions of silks
range from web construction and prey capture (spider
webs), safety line (draglines) to reproduction (cocoons)
[5–7]. Silks provide an excellent combination of lightweight
(1.3 g/cm3), high strength (up to 4.8GPa as the strongest
fiber known in nature), and remarkable toughness and
elasticity (up to 35%) [8]. For example, while the tensile
strength of dragline silk is comparable to that of synthetic
high-tenacity fibers like Kevlar 49, its elasticity is 4–7 times
higher than Kevlar 49 and the energy required to break
dragline silk is 3–4 times higher than that for Kevlar 49. In
addition to the remarkable mechanical properties, silks are
thermally stable up to �250 1C, allowing processing over a
wide range of temperatures [7]. Details on the structure,
mechanical properties and biocompatibility of silks can be
found in recent reviews [1,2,4–9].

Silk in its natural form is composed of a filament core
protein, silk fibroin, and a glue-like coating consisting of a
family of sericin proteins. The most widely studied silks are
cocoon silk from the silkworm Bombyx mori and dragline
silk from the spider Nephila clavipes [3,10–13]. Structurally,
silk fibroins from these species are characterized as natural
block copolymers composed of hydrophobic blocks with
highly preserved repetitive sequence consisting of short
side-chain amino acids such as glycine and alanine, and
hydrophilic blocks with more complex sequences that
consist of larger side-chain amino acids as well as charged
amino acids [6,14]. The hydrophobic blocks tend to form
b-sheets or crystals through hydrogen bonding and
hydrophobic interactions, forming the basis for the tensile
strength of silk fibroins [15,16]. These ordered hydrophobic
blocks combine with the less ordered hydrophilic blocks
Table 1

Repetitive amino acid sequences in the crystalline regions of silk fibroins from

Species

Silk worm Bombyx mori

Silk worm Antheraea pernyi

Silk worm Galleria mellonella

Spider Nephila clavipes

Major ampullate glands 1 (NCMAG 1 or spidroin 1)

Spider Nephila clavipes

Major ampullate glands 1 (NCMAG 2 or spidroin 2)

Spider Argiope trifasciata

Modified from Ref. [19,171–174].
to give rise to the elasticity and toughness of silk
fibroins [3,12,17].
The insight into how silk fibroin solutions are processed

into fibers by various organisms remains an area of
intensive study. The process involves the spinning of the
highly concentrated silk fibroin aqueous solutions in a non-
Newtonian liquid crystalline state, where the silk fibroins
are lubricated and stabilized by water and form micelle-like
structures through phase separation due to silk fibroin’s
intrinsic hydrophilic–hydrophobic block structure [3,11].
The process is mediated by the content and location of
water [11]. During the process, the concentration of silk
fibroin solution in the gland gradually increases to form
micelles, which further aggregate to form globule like
structures and gels [11]. At this stage, the silk fibroin
protein is organized in a metastable state that maintains
sufficient water content to avoid premature conversion to
the b-sheet structure. The shear alignment during spinning
(head movement of the silkworm, leg pulling by spiders)
induces the final assembly of the b-sheets into crystalline
blocks [11]. In the final stages of spinning in silkworms,
hydrophilic proteins like sericin form composite matrices
with the core fibroin fibers [3,11]. Once formed, silk fibers
are insoluble in most solvents such as water, ethanol, dilute
acids and bases, unless highly concentrated sulfuric acid,
formic acid, hexafluoroisopropanol (HFIP), calcium ni-
trate or LiBr solutions are used [18,19].
The crystalline region of silk fibroins contains repetitive

alanine or alanine–glycine rich sequences (Table 1). These
repetitive sequences have been used as the basis for
genetically engineering silk fibroin-like polymers in host
systems like Escherichia coli, yeast, mammalian cells, and
plants [13,20–27]. Similar to native silk fibroins, most
recombinant silk fibroin-like polymers exhibit low solubi-
lity in water due to hydrophobicity [2,15,16,19,28].
Strategies to regulate the self-assembly of recombinant silk
fibroin-like polymers to increase solubility typically in-
clude: (a) the inclusion of molecular triggers [29], such as
selected silkworms and the spiders

Core Repetitive Sequence

GAGAGSGAAG[SGAGAG]8Y

GSGAGG(X)GGGYGWGDGGYGSDS (X ¼ S, A, V, R)

GS(SAA)2(SGA)2GE(VI)2DDRS(SAA)2AASSGASGLGGLG

GGAGQGGYGGLGSQGAGRGGLGGQGGAG

GPGGYGPGQQGPGGYAPGQQPSGPGS

(GP(GGX)1�4Y)n (X ¼ Y, V, S, A)
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reduction-oxidation of methionines to control b-sheet
formation [30,31] or kinase sites for phosphorylation/
dephosphorylation reactions [32]; (b) the construction of
chimeric silk fibroin-like polymers to incorporate a-helical
structures [33]; and (c) the inclusion of elastin-like domains
(GVGVP) to reduce crystallinity [25,34]. The last approach
generates silk fibroin-elastin-like copolymers, some of
which form hydrogels under physiological conditions,
making them attractive candidates for injectable systems
for the controlled delivery of therapeutic agents [19,34–36].

2. Silk fibroin as a scaffold/matrix for cell-based tissue

engineering

For functional tissue repair, tissue engineering combines
cells and bioactive factors in a defined microenvironment
created by biomaterial scaffolds that are maintained in
bioreactors with controlled environmental stimuli [37,38].
A key component for tissue engineering is the biomaterial
scaffold, commonly prepared from natural or synthetic
polymers, as summarized in Table 2. Ideally, scaffolds
should:
(1)
Tab
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Poly
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Reg

Poly

copo

Poly

Poly

Tyro

Poly

Poly

Poly

Poly
support cell attachment, migration, cell–cell interac-
tions, cell proliferation and differentiation;
(2)
 be biocompatible to the host immune system where the
engineered tissue will be implanted;
(3)
 biodegrade at a controlled rate to match the rate of
neotissue growth and facilitate the integration of
engineered tissue into the surrounding host tissue;
(4)
 provide structural support for cells and neotissue
formed in the scaffold during the initial stages of
post-implantation and
(5)
 have versatile processing options to alter structure and
morphology related to tissue-specific needs.
Although silk has been used clinically as sutures for
centuries, only recently has it been exploited as a scaffold
le 2
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biomaterial for cell culture and tissue engineering in vitro
and in vivo. Like most biomaterials used in tissue
engineering, silk was first evaluated for cellular responses
such as attachment and proliferation on 2D film in tissue
culture wells. Minoura et al. observed that films formed
from native silkworm fibroin collected from glands of
B. mori domestic silkworms and Antheraea pernyi wild
silkworms were comparable to collagen films in terms of
supporting attachment, spreading and proliferation of
murine L-929 fibroblasts [39,40]. Inouye et al. and Gotoh
et al. later found that films formed from regenerated silk
fibroin prepared by dissolving silkworm cocoon fibers in
9–9.5M LiBr supported the attachment and growth of
human and animal cell lines [41,42]. The authors attributed
this cell attachment to the presence of positively charged
residues like arginine near the C-terminus of the non-
repetitive (hydrophilic) regions of the silk fibroin sequence,
considering the surface of mammalian cells are predomi-
nantly negatively charged [39,41]. Minoura et al. observed
a stronger cell adhesion on films formed by silk fibroins
from A. pernyi, the wild-type silkworm, than those from
B. mori domestic silkworms [39]. The difference was
attributed to the presence of the tripeptide Arg(R)-
Gly(G)-Asp(D), a recognition site for integrin-mediated
cell adhesion [43–45], in the silk fibroin sequence from the
wild silkworms, but not the domestic silk worms [39]. The
effect of the RGD sequence on the attachment of
mammalian cells to silk fibroins was confirmed by Sofia
et al. and Chen et al. through surface modification
experiments with human osteoblasts, fibroblasts and bone
marrow derived stem cells [46,47]. The enhancement of cell
binding due to coupling RGD on silk fibroin may result
from a combination of specific interactions mediated by
integrin interactions and increased hydrophilicity on the
otherwise highly hydrophobic silk fibroin materials. Inter-
estingly, films formed from sericin, the glue-like coating
protein found in naturally spun cocoon silk, also supported
the attachment and growth of murine L929 fibroblast cells
tissues targeted with these materials
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[40] and human primary skin fibroblasts [48]. Sericin also
promotes cell proliferation if used as a medium supplement
[49,50]. However, sericin has been identified as the major
cause for adverse immune responses associated with silk
materials [5], obviating its utility for tissue engineering. A
number of studies have demonstrated that, upon sericin-
removal, regenerated silk fibroin has good biocompatibility
[5,51–53], hemocompatibility [54], as well as oxygen and
water permeability [55,56]. Collectively, these studies
established the basis for the utility of silk fibroin from silk
worms as a potential scaffold/matrix biomaterial for cell
culture and tissue engineering.
Over the past few years, numerous studies have

explored the potential of native and regenerated silk
fibroin-based biomaterials in various forms, including
films/membranes, micro-/nano-fiber mats/nets, hydrogels,
and porous sponges, which are reviewed in the following
paragraphs in the context of biomedical applications
(summarized in Table 3). It is worth mentioning
that, although so far the majority of research activity
has been focused on silk fibroin from B. mori domestic
silkworms, very recently recombinant spider dragline
silk-bearing RGD binding domains has also been produced
and subsequently processed into films and fibers for
applications in cell culture and tissue engineering
(unpublished data). This opens exciting new possibilities
to expand silk-based materials for cellular therapeutic
applications.

3. Silk fibroin films/membranes

3.1. Regenerated silk fibroin films and coatings

Silk fibroin has been used as coating material for
polymer scaffolds designed for cell culture and tissue
engineering [57–61]. Cai et al. reported that coating
poly(D,L-lactic acid) films with regenerated silk fibroin
improved interactions between osteoblasts and the polymer
films [60,61]. Petrini et al. coated the surface of 2D and 3D
polyurethane scaffolds by dipping the scaffolds in 3–4%
w/w silk fibroin solutions obtained from B. mori [57].
Stable silk fibroin coatings with a thickness of 200–600 nm
were formed. Methanol treatment further stabilized the
coatings by inducing a transition to the beta sheet
crystalline silk structure, also referred to as the silk-II
structure. Chiarini et al. examined the effect of silk fibroin
coatings on 2D poly(carbonate)-urethane substrates on
attachment, proliferation, metabolism and ECM synthesis
of four strains of human fibroblasts [58]. The silk fibroin
coating improved cell attachment by 2.2 fold, which
resulted in a 2.5 fold increase in total cell number by day
30 in culture. Concurrently, the silk fibroin coating
significantly affected the metabolism of fibroblasts, indu-
cing higher glucose uptake and lower glutamine consump-
tion per cell in the initial stages of cultivation. The coating
also enhanced the extracellular assembly of collagen type I
(Col-I), the major ECM contribution from fibroblasts.
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Fibroblasts seeded on silk fibroin-coated substrates did not
secrete appreciable levels of cytokines like IL-1b, TNF-a,
or TGF-b1, all of which are implicated in inflammation
reactions and tissue repair during wound healing. How-
ever, the secretion of IL-6, another important cytokine
involved in inflammation reactions and wound healing,
was detected and enhanced by silk fibroin coating after 2
weeks. Using similar methodology, Dal Pra et al.
investigated the cellular response of human fibroblasts
seeded on silk-fibroin coated 3D polyurethane scaffolds
[59]. The coating affected the cell attachment, proliferation,
and cellular metabolism in a similar fashion as on the 2D
substrate. Cytokines like IL-1b, TNF-a, and TGF-b1 were
also undetected in this system. In comparison to the 2D
substrates, silk fibroin coated on 3D scaffolds did not
significantly affect the expression of IL-6 or the extra-
cellular assembly of Col-I. These differences indicate the
complexity of transferring information obtained in 2D
formats to 3D biomaterial structures. Regardless, these
studies provided an experimental basis for the potential of
silk fibroin as a coating material for tissue-engineering
scaffolds on a variety of underlying material substrates.

Wang et al. recently employed an all-aqueous stepwise
(layer-by-layer) deposition technique to assemble nanos-
caled thin film silk fibroin coatings on a number of
substrates and evaluated the response of human bone
marrow mesenchymal stem cell (MSC) to the coatings [62].
Mechanistically, hydrophobic interactions and partial
electrostatic interactions were the main driving
forces for the deposition and stabilization of the silk
fibroin on the solid substrate surfaces. Therefore, both
hydrophilic and hydrophobic materials could be coated.
The thickness of the multilayered film coatings was linearly
correlated with the number of layers, each of which had a
controlled thickness in the range of a few to tens of
nanometers depending on the concentration of silk fibroin
and salt in the solution used in the process. During the
process, silk fibroin undergoes a structural transition from
a mixture of random coil and a-helices (silk I) to organized
b-sheets (silk II structure) based on FTIR analysis. The silk
fibroin films were stable and supported the attachment,
proliferation, and differentiation of the human bone
marrow MSCs. This simple, yet versatile, technique has
the potential to be used to generate silk fibroin films with
controlled morphological and structural features for
clinical applications such as drug delivery and tissue
engineering. The process also allows for conformal coat-
ings of various articles.

3.2. Silk fibroin films with surface modifications

The biomedical applications of silk fibroin films could be
broadened by surface modifications with RGD or specific
growth factors. As mentioned earlier, Sofia et al. and Chen
et al. showed the benefit of RGD coupling (via carbodii-
mide chemistry) to silk fibroin films and fibers on the
attachment, spreading, proliferation and differentiation of
human Saos-2 osteoblasts, fibroblasts and bone marrow
stromal cells [46,47]. Similarly, Kardestuncer et al. showed
that RGD modification of silk fibroin enhanced the
adhesion and proliferation of human tenocytes and
supported their differentiation as evidenced by elevated
transcript levels for decorin and Col-I [63]. The enhanced
differentiation of cells on RGD coupled silk matrices is
likely due to an increased cell density, which enhances
cell–cell interactions [47].
Sofia et al. also showed that surface modification with

parathyroid hormone (PTH), which affects the differentia-
tion of osteoblasts in vitro [64] and in vivo [65] if used in
soluble form, may enhance cell attachment but not
differentiation of human Saos-2 osteoblasts on silk fibroin
films [46]. More recently, Karageorgiou et al. showed that
silk fibroin films decorated with bone morphogenetic
protein-2 (BMP-2) via covalent coupling enhanced osteo-
genic differentiation of human bone marrow stromal cells
[66]. Compared to adsorbed BMP-2, covalently coupled
BMP-2 was retained on the surface at a significantly higher
level for a longer period in culture media. Within a week,
70% of the adsorbed BMP-2 was released from the film
surface. By the end of week 4 only 10% of the adsorbed
BMP-2 remained while 50% of the coupled BMP-2 still
present. More importantly, both covalently coupled and
surface-adsorbed BMP-2 remained active and enhanced
the osteogenic differentiation of the bone marrow stromal
cells. And the covalently immobilized BMP-2 was more
effective than soluble BMP-2, likely due to a slower
degradation and a higher protein concentration in the
local microenvironment.
Overall, these studies demonstrated that the diversity of

amino acid side chain residues contained in silk
fibroin provides useful and accessible options for surface
decorations with adhesion ligand and specific growth/
morphogen factors. In most cases, biological activity was
retained and in some cases improved. These strategies open
up further options for selective chemical enhancements of
the silk fibroin biomaterial to encode functions related to
directing cell and tissue outcomes in a tissue-engineering
context.

3.3. Biomaterial films by blending silk fibroin with other

natural or synthetic polymers

The structure and properties of silk films can be further
modified by blending with other natural and synthetic
polymers such as cellulose [67,68], chitosan [69,70],
poly(ethylene oxide) [71], polyacrylamide [72], poly(ethy-
lene glycol) [73–75], poly(vinyl alcohol) [76], poly(e-
caprolactone-co-D,L-lactide) [77], collagen [78], polyallyla-
mide [79], S-carboxymethyl keratin [80,81], and other
systems. Although most of these materials have not been
fully tested in vivo for biocompatibility and degradability,
a few reports have shown that silk fibroin films and some
blend/composite materials promote in vivo healing when
used as a wound dressing [52,82].
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4. Regenerated silk fibroin hydrogels

Hydrogels can be formed from regenerated silk fibroin
solution by a sol–gel transition in the presence of acid, ions,
or other additives [70,83–87]. Besides these additives, other
factors such as temperature, silk fibroin concentration, and
pH significantly affect the gelation process. Generally,
gelation time decreases with an increase in silk fibroin
concentration, temperature, concentration of additives like
Ca2+, glycerol and poly(ethylene oxide), or a decrease in
pH [84,85]. During the gelation process, silk fibroin
experiences a structural transition from random coil to
b-sheet due to enhanced hydrophobic interactions and
hydrogen bond formation [84–86,88,89]. Regenerated silk
fibroin can also be blended with other biopolymers like
chitosan and gelatin to form hydrogels [70,90,91] and
scaffolds [92]. In addition, genetically engineered silk
fibroin-like polymers have been used to prepare hydrogels
[36,93–96]. Silk fibroin hydrogels have been studied for
controlled release/delivery of bioactive agents such as
plasmid DNA, viruses, and growth factors [19,36,97].

Recently, silk fibroin hydrogels were explored for their
potential in guided tissue repair. Fini et al. reported the
repair of confined, critical-sized cancellous bone defects in
a rabbit model using silk fibroin hydrogels [98]. The
hydrogels were prepared by adding 1M citric acid to a 2%
w/v regenerated silk fibroin aqueous solution until passing
the isoelectric point (3.8), followed by an overnight
treatment at 50 1C. Since the acidity of resultant silk
fibroin hydrogels (pH ¼ 3:3) was not suitable for cell
culture, the hydrogel was extracted using a 0.9% NaCl
solution at 37 1C for 3 days. The resulting extract
(pH ¼ 5:8) was subsequently used for in vitro cytotoxicity
and cytocompatibility evaluations using a human osteo-
blast-like cell line (MG63). The silk fibroin hydrogels
showed cytocompatibility comparable to poly(D,L lactide-
glycolide), based on cellular responses such as cell
proliferation, differentiation, and the release of inflamma-
tion-related cytokine IL-6. Despite the apparent low pH,
the silk fibroin hydrogels supported the healing of critical
sized cancellous bone defects in vivo in 12 weeks with no
obvious inflammatory reactions.

With further processing, such as freeze-drying, micro-
porous silk fibroin sponges can be formed from hydrogels
and used for cell culture and tissue engineering [85,99–101].
Morita and Aoki et al. combined microporous silk fibroin
sponges with freshly isolated rabbit chondrocytes for
cartilage tissue engineering [99–101]. Throughout the
cultivation, the chondrocytes proliferated and maintained
the differentiated phenotype in the silk fibroin sponge
better than in collagen gels used as a control. The
mechanical properties of the regenerated cartilage tissue
demonstrated culture time-dependent changes that corre-
spond to the temporal and spatial deposition of cartilage-
like extracellular matrix [100,101]. These results suggest the
potential of hydrogel-derived silk fibroin sponges as 3D
porous scaffolds for chondrocyte-based cartilage regenera-
tion. There remain a series of questions regarding: (a)
whether these sponges will be able to support the
differentiation of culture-expanded chondrocytes, as
freshly isolated chondrocytes are often in limited numbers
and quickly de-differentiate during in vitro expansion; (b)
whether sufficient cell condensation and cell–cell interac-
tions needed for chondrogenic differentiation can be
achieved in these sponges; and (c) whether cartilage-like
tissues with more uniform extracellular matrix deposition
can be regenerated by overcoming the mass transfer
constraints in the rather small pores in the spongy
scaffolds. Putatively, the mechanical performance of the
generated cartilage tissue would be improved if these issues
were fully addressed. In general, standard protocols to
assess mechanics of tissues generated from silk-based
biomaterial matrices are employed, including mechanical
compression via Instron sytems, for cartilage-like tissues.

5. Non-woven silk fibroin micro-/nano-fibrous nets/mats/

membranes

Non-woven fibrous silk fibroin nets/mats/membranes
can be prepared using degummed silk fibroin fibers with
diameters in the range of several to tens of micrometers in
their native or partially dissolved forms [102–104]. Finer
meshes can be obtained by electrospun silk fibroin fibers
with diameters in the range of tens to hundreds of
nanometers [105–111]. Unger et al. reported that non-
woven micro-fibrous nets support the adhesion, prolifera-
tion, and cell–cell interactions of a wide variety of human
cell types including epithelial cells, endothelial cells, glial
cells, keratinocytes, osteoblasts, and fibroblasts [104]. A
follow up study from the same group showed that, if
precoated with fibronectin, these micro-fibrous nets sup-
ported in vitro endothelialization, an essential step for
vascularization [103]. After seeded in fibronectin-coated
silk fibroin nets, primary human endothelial cells of
macro-/micro-vascular origin exhibited normal structure,
proliferative activity, migration, cell–cell interactions and
other phenotypical features. Cell cultivation did not alter
the structural integrity of the non-woven nets. In addition,
the good cytocompatibility of these non-woven nets to
keratinocytes and osteoblasts suggested potentials for skin
or bone repair, which would have to be evaluated through
further studies. Recently, Dal Pra et al. evaluated the
biocompatibility of non-woven micro-fibrous meshes com-
posed of partially dissolved native silk fibroin fibers [102].
After implanting subcutaneously, the non-woven micro-
fibrous meshes induced a mild foreign body response
without fibrosis. Among 23 proinflammatory genes eval-
uated by microarray, only migration inhibitory factor
showed a transient intense expression at the mRNA level in
implantation sites with the silk fibroin mesh. No appreci-
able infiltration of lymphocytes was observed six months
after implantation. These results suggest good biocompat-
ibility. These silk fibroin mesh implants supported the
regeneration of vascularized reticular connective tissue
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based on the temporal evaluation of cytokeratins, vimen-
tin, and Col-I; and based on morphological, histological,
and immunohistochemical evaluations of the regenerated
tissue at different time points after implantation. Within 6
months of implantation the silk fibroin mesh implants were
integrated with the surrounding tissue while no apparent
degradation was observed. This study and the in vivo study
by Sugihara et al. [52] identified silk fibroin-based
membranes/meshes as promising materials for skin regen-
eration.

Non-woven nano-fibrous nets/mats prepared by electro-
spinning regenerated silk fibroin solution are of interested
for biomedical applications because of the high surface
area of these materials. Upon electrospinning and treat-
ment with methanol, nanofiber solubility in water can be
negated thus the mechanical properties can be improved
[105,107,108]. Jin et al. and Min et al. reported that the
non-woven silk fibroin nano-fibrous mats/nets support the
attachment, spreading and proliferation of human bone
marrow stromal cells, keratinocytes and fibroblasts in vitro
[108,109,112]. Kim et al. examined the in vivo biocompat-
ibility of silk fibroin non-woven nanofiber membranes/nets
and their effect on guided repair of critical-sized calvarial
bone defects in a rabbit model [106]. The nanofiber
membranes/nets were formed by electrospinning regener-
ated silk fibroin solution in 98% formic acid on a grounded
target drum and subsequently treated with 50% methanol
for 60min at room temperature before drying for 24 h
under vacuum. The resulting non-woven nanofibrous
membranes contained randomly deposited fibers with
diameters ranging from 150 to 300 nm. The membranes
supported the in vitro attachment, spreading, proliferation
and differentiation of MC3T3-E1 osteoblast-like cells.
When evaluated in vivo in a rabbit calvarial bone defect
model, the silk fibroin non-woven nanofibrous membranes
showed good biocompatibility and structural stability. The
membranes were able to enhance bone formation over 12
weeks with no evidence of inflammatory reactions. This
study suggests that non-woven silk fibroin nano-fibrous
nets/mats/membranes have the potential to be used for
guided regeneration of bones at non-weight bearing sites.
The repair of weight bearing bones, such as femur
and tibia, requires scaffolds with good mechanical
strength [113–115].

6. Silk fibroin-based 3D scaffolds for stem cell-based tissue

engineering

Cell-based tissue engineering requires a reliable cell
source to respond properly in terms of morphology,
proliferation and tissue-specific differentiation to bioma-
terial scaffolds and other biochemical/physical signals.
Embryonic stem cells are capable of giving rise to cell types
of all tissue lineages; however their applications in cell-
based tissue engineering are constrained by a lack of
fundamental understanding and control of their differen-
tiation toward desired specific tissue lineages in vitro and in
vivo. There are also legal restrictions and ethical concerns
surrounding their use for medical applications. In contrast,
adult stem cells can only differentiate towards a limited
number of tissue lineages. The isolation, expansion, genetic
manipulation, and clinical application of adult stem cells
must follow appropriate local and federal regulations.
However, it is generally acceptable from the public and
federal government funding perspectives to use adult stem
cells for clinical applications. For these reasons, adult stem
cells have emerged as an attractive alternative to embryonic
stem cells as a cell source for tissue engineering. One such
example is MSCs, which can be isolated from a wide
variety of tissues including bone marrow [116,117],
periosteum [118,119], synovium [120], muscle [121–123],
adipose tissue [124], lung [125–127], bone [128], deciduous
teeth [129], dermis [130], and articular cartilage [131].
MSCs can be expanded and differentiated into cells of
different connective tissue lineages including bone, carti-
lage, fat, and muscle upon proper stimulation [132]. These
cells also have the potential for a wide range of therapeutic
applications through autologous, allogeneic or xenogeneic
stem cell transplantation [132,133]. Bone marrow is the
major source of MSCs and bone marrow-derived MSCs
have been used to treat a variety of defects and diseases,
including critical size segmental bone defects [134–136], full
thickness cartilage defects [137–139], tendon defects [140],
myocardial infarction [141] and even nerve defects
[142,143]. In the following context, this review will focus
on the potential of combining bone marrow derived MSCs
and silk fibroin-based 3D scaffolds for tissue-engineering
applications.

6.1. Native silk fibroin fibers for stem cell-based ligament

tissue engineering

Over 200,000 Americans require knee ligament recon-
struction annually [144–146]. The ACL and the posterior
cruciate ligament (PCL) are the major intra-articular
ligaments connecting the femur to the tibia to stabilize
the knee. Damages to these ligaments render the knee
unstable and susceptible to further injury, which can
eventually cause the knee to lose its normal function. The
ACL is the most commonly injured ligament with a
higher frequency occurring in females than males [147].
The normal ACL is a dense, cable-like tissue with a
complex but highly organized ECM containing
collagen, elastin and proteoglycans. If severely damaged,
the ACL tissue has poor self-healing capacity due to
limited access to the blood supply [144]. The traditional
treatment for severe ACL injuries using biological
substitutes (autografts, allografts and xenografts)
has been associated with disadvantages such as limited
donor tissue supply, potential disease transmission, infec-
tion, and immune rejection [144,146]. As an alternative to
biological substitutes, synthetic material-based ligament
replacements have had only limited success due to material
fatigue, debris generation, inflammatory reactions, poor
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tissue ingrowth, and damage to the anchor sites in the
femur and tibia [144,146]. These limitations have prompted
interest in ligament tissue engineering strategies based
on biomaterials and autologous cells, especially adult
stem cells.

Altman et al. first explored the potential of native silk
fibroin fibers (yarns) as 3D scaffolds for tissue engineering
of ACL in cultures with dynamic mechanical loading
[5,148–150]. After sericin extraction, the silk fibroin fibers
were cabled into 6-cord wire-rope matrices with improved
elasticity without sacrificing tensile strength when com-
pared to an equivalent matrix formed from parallel fibers.
This matrix had a hierarchal structure similar to that of
collagen fibers in the native ACL and the mechanical
properties were comparable to that of the native human
ACL with respect to strength, stiffness, yield point, and
percentage elongation at break. In addition, the wire-rope
geometry increased surface area for cell attachment and
ECM deposition and minimized mass transfer limitations,
all of which contribute to an enhanced neotissue forma-
tion. The silk fibroin scaffolds supported the attachment,
spreading, proliferation and differentiation of adult human
MSCs [148]. During 3 weeks in static culture, the silk
fibroin scaffolds retained mechanical strength. At week 2,
the expression levels of ligament-related transcripts (tenas-
cin-C, collagen type III (Col-III) and Col-I) were sig-
nificantly higher in cells seeded on the silk fibroin scaffolds.
In comparison, the expression of bone or cartilage related
genes was not significantly affected, suggesting the silk
fibroin scaffolds enhanced the ligament-specific differentia-
tion of adult human MSCs [148]. This tissue-specific
differentiation was further enhanced in a computer-
controlled bioreactor that imparted complex mech-
anical forces to the silk matrices, in conjunction with
improved fluidic control ([149,150] and Chen et al.,
unpublished data).

Recently Horan et al. systematically investigated the
effect of yarn design on the mechanical properties of these
silk fibroin scaffolds [151]. Extracted silk fibroin yarns were
fabricated using 4 textile methods (twisted, cabled, braided,
and textured) to form several geometries (Fig. 1). The
mechanical properties of the yarns were significantly
affected by the fabrication methods when tested in
hydrated condition used to mimic physiological conditions
(summarized in Table 4). Based on the mechanical features,
braided and textured yarns were not suitable for tissue
engineering applications where regular loading/un-loading
and tissue ingrowth are needed (Table 4). Among the four
textile methods, the cabled yarns possessed a highly
organized hierarchal structure and allowed the most
flexibility in controlling mechanical outcomes. Surface
modifications such as RGD coupling and plasma treatment
had significant influence on the mechanical strength of the
yarns. Plasma treatment with NH3 and N2 decreased the
yarn strength by 7.2% and 3.5%, respectively, but did not
affect the stiffness. The RGD surface modification resulted
in a 13.1% increase in mechanical strength and an 11.4%
decrease in stiffness of the yarns [151], in addition to the
positive effect of this treatment on cell attachment,
proliferation and differentiation [47]. In summary, when
intended for tissue-engineering applications, yarn designs
should take the following features into considerations:
(a) size and physiological environment of implants;
(b) mechanical properties (strength, stiffness, yield, and
fatigue) under regular loading/un-loading conditions; (c)
surface properties (surface area and surface modifications
with functional ligand like RGD); (d) void volume/length if
tissue ingrowth is desired; and (e) biocompatibility and in
vivo degradation rate [151].
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Table 4

Yarn design for tissue engineering

Yarn type Mechanical features Implications Potential in tissue engineering

Braided (1) Instantly locked upon

mechanical loading, causing a

sharp increase in stiffness

(2) Permanent locking occurs once a

significant load is applied

(1) Stress shielding

(2) Permanent deformation

(3) Neotissue damage due to scissoring effect

Applications with no regular

loading/un-loading and tissue

ingrowth

Textured (1) Fibers permanently deformed,

resulting in strain hardening of

the yarn

(2) Increased stiffness

(3) Decreased tensile stress/fiber

(1) Increased volume/length for better tissue

ingrowth

(2) Permanent deformation

Non-loading bearing applications

with tissue ingrowth

Twisted or cabled (1) Highly organized geometry

(2) Decreased stiffness

(3) Significant decrease in tensile

strength for yarns with large

diameter

(1) Flexibility in mechanical outcome in a wide

range

(2) Hierarchal organization similar to native tissue

Regular loading bearing applications

with highly organized tissue

ingrowth

Summarized based on Ref. [151].
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6.2. Regenerated silk fibroin for stem cell-based bone tissue

engineering

The timely repair of critical sized bone defects/damages
remains a major challenge for regenerative medicine. As a
complex, highly organized tissue with a mineralized
extracellular matrix, bone possesses marked rigidity,
strength, and some elasticity, all of which are essential to
support and protect the body. In addition, as the major
source of inorganic ions, bone is essential to calcium
homeostasis. Cortical (compact) bone provide mechanical
and protective functions while cancellous (spongy) bone
mainly provides metabolic functions [152]. The complexity
of bone tissues and their morphological, structural and
functional diversity impart a great deal of difficulties to the
repair of critical sized bone defects/damages. Despite the
merit of immune compatibility, bone repair using auto-
logous tissue is often not the best treatment option as it is
associated with disadvantages like limited donor tissue
supply, repeated surgery, second site morbidity with
additional pain, and long rehabilitation time [37,153].

A number of recent studies have explored a tissue
engineering approach using silk fibroin scaffolds in various
forms for the repair of bones with diverse morphologies
[98,106,153–156]. As previously reviewed, silk fibroin
hydrogels [98] and membranes/nets [106] without pre-
seeded cells have been used for guided bone regeneration.
In recent years, techniques have been developed to use 3D
porous silk fibroin scaffolds and MSCs for the repair of
critical-sized bone defects/damages [153–157]. The 3D
porous scaffolds were derived from regenerated B. mori

silk fibroin solution using either an all aqueous process or
an organic solvent (HFIP) process with salt leaching, gas
foaming and freeze drying as modes to generate the
interconnected pore structures in the 3D matrices
[157–159]. The highly porous scaffolds (porosity up to
99%) prepared by salt leaching possess a useful combina-
tion of high compressive strength and uniform, intercon-
nected pores with controllable pore size and size
distribution (Fig. 2). The morphological and structural
features of the scaffolds produced by salt leaching depend
on a number of variables including silk fibroin concentra-
tion, solid salt particle loading, salt particle size, and the
use of aqueous- or HFIP-derived process. A phase diagram
for the formation of the aqueous and HFIP-derived 3D
porous scaffolds has been generated based on these
approaches [157] (Fig. 3). During the formation of these
scaffolds, silk fibroin generally undergoes a structural
transition from random coil to b-sheet structures, regard-
less of the solvent used in the process [158,159]. The HFIP-
derived scaffolds can be formed by silk fibroin solutions in
a larger range of concentrations (6–20% w/v) than those
(4–10% w/v) for the aqueous-derived scaffolds [157].
However, the aqueous-derived scaffolds have better pore-
interconnectivity, rougher and more hydrophilic surfaces,
and higher mechanical strength than the HFIP-derived
scaffolds [158]. In addition, aqueous-derived scaffolds
degrades faster than the HFIP-derived scaffolds both in
vitro [158] and in vivo (Wang et al., unpublished data). All
of these characteristics allow the preparation of scaffolds
with controllable morphological and structural features to
match diverse needs for the engineering of various tissues
with specific functional requirements in vivo such as repair
rates and tissue remodeling rates.
Meinel et al. and Kim et al. have systematically

investigated HFIP- and aqueous-derived 3D porous silk
fibroin scaffolds for MSC-based bone tissue engineering in
vitro and in vivo [153–156]. Prior to cell seeding, the MSCs
were characterized for the expression of surface markers
and the capacity to differentiate into cells of multiple
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lineages [154,155]. The MSCs stained positive for CD105,
CD44, and CD71 and negative for CD34 and CD31. In
pellet cultures, the MSCs were shown to have the capacity
to differentiate along chondrogenic and osteogenic lineages
[154,155]. When cultured in BMP-2-containing osteogenic
medium under static conditions for 4 weeks, MSCs seeded
in HFIP-derived porous 3D silk fibroin scaffolds (pore size
�200 mm) showed an enhanced osteogenic differentiation
over the control (collagen scaffolds) as evaluated by
realtime RT-PCR for bone-related gene markers and by
immunohistochemistry and microcomputerized tomogra-
phy for calcium deposition. The RGD modification of the
scaffolds further enhanced the differentiation of MSCs and
resulted in more organized extracellular matrix structures
under the same culture condition [155]. When cultured
under dynamic conditions, the stability of the HFIP-
derived silk fibroin scaffolds were beneficial in terms of
maintaining high cell density and promoting the differ-
entiation of MSCs [153,154]. Upon 5 week’s cultivation in
spinner flasks stirred at 60 rpm, the MSCs successfully
generated trabecular-like bone networks with an extra-
cellular matrix similar to that of the physiological bone
[153]. Subsequently, the engineered bone-like tissue was
implanted into critical sized calvarial bone defects in nude
mice and compared with MSC freshly seeded scaffolds,
scaffolds alone and unfilled defects. Five weeks after
implantation, the tissue engineered bone implants and
freshly seeded scaffolds integrated well with the surround-
ing tissue and stained positive in the center regions for bone
sialoprotein, osteopontin and osteocalcin, which was not
observed in the controls (scaffolds alone and unfilled
defects). Compared to MSC freshly seeded implants, the
tissue-engineered bone implants showed more substantial
bone formation. Within 5 weeks, these tissue-engineered
implants started to transform from the trabecular-like bone
network to coalescing structures, similar to the physiolo-
gical healing process of intramembraneous bone [153].
Collectively, these observations suggested that a tissue-
engineering approach combining 3D porous silk fibroin
scaffolds and MSCs holds promise for the repair of critical
sized bone defects, where the contribution of host cells is
not sufficient for a proper healing. In addition, Kim et al.
recently reported that aqueous-derived silk fibroin scaf-
folds showed improved bone-tissue engineering outcomes
when compared to HFIP-derived silk fibroin scaffolds in
vitro [156]. This study suggests important implications for
silk protein processing modes related to biomaterial matrix
interactions with stem cells for tissue engineering.

6.3. Regenerated silk fibroin for stem cell-based cartilage

tissue engineering

Healthy articular cartilage is an avascular tissue with a
zonal matrix rich in collagen type II (Col-II) and
glycosaminoglycans (GAGs) [160]. Adult articular carti-
lage has limited self-repair capacity due to the low cell
density, slow cell proliferation, slow matrix turnover rate,
and lack of the vascular supply. Severe damages in
articular cartilage tissue caused by developmental abnorm-
alities, trauma, or aging-related degeneration such as
osteoarthritis often result in extensive chronic pain,
gradual loss of mobility and eventually disability. Current
treatment methods are often not sufficient to achieve a
timely recovery of normal cartilage functions or to
maintain a long-term therapeutic effect [133]. Most
synthetic polymers used in cartilage tissue engineering,
especially the widely used polyesters like poly(lactide)
(PLA), poly(glycolide) (PGA), or the copolymer poly(lac-
tide-co-glycolide) (PLGA), induce some inflammation in
vivo [161,162]. The use of collagen as a natural polymeric
scaffolding material is impeded by fast degradation [163]
and a high swelling ratio [158]. Alginate as another popular
natural biomaterial also has limitations including fast
degradation, insufficient mechanical properties, inhibitory
effects on spontaneous repair, and unfavorable immuno-
logical responses [164,165]. The useful combination of high
strength, porosity, processability, good biocompatibility
and ability to support cell adhesion, proliferation and
differentiation as reviewed above suggests 3D porous silk
fibroin scaffolds as candidates for stem cell- and chon-
drocyte-based cartilage tissue engineering [53,163,166,167].
Meinel et al. first combined 3D HFIP-derived silk fibroin

scaffolds (pore size �200 mm) and MSCs for in vitro
cartilage tissue engineering and compared outcomes with
unmodified and crosslinked collagen scaffolds [163].
Similar to the observations in bone-tissue-engineering
studies [154,155], the structurally stable, slow degrading
scaffolds (crosslinked collagen scaffolds, silk and RGD-
modified silk scaffolds) were essential to maintain sufficient
cell density and promote the formation of cartilage-like
extracellular matrix, as evaluated by total DNA content
and glycosaminoglycan deposition. After 4 weeks, MSCs in
the porous silk fibroin scaffolds deposited higher amounts
of cartilage-specific extracellular matrix proteins (GAGs
and Col-II) and expressed higher levels of Col-II mRNA
than MSCs in the collagen-based scaffolds.
Wang et al. utilized 3D porous aqueous-derived silk

scaffolds (pore size �550 mm) for in vitro cartilage tissue
engineering using MSCs and chondrocytes [166,167].
MSCs successfully adhered, proliferated and differentiated
along the chondrogenic lineage in the aqueous-derived silk
fibroin scaffolds, based on evaluations using confocal
microscopy, real-time RT-PCR, histology and immunohis-
tochemistry. In the 3D cultivation environment created by
the highly porous aqueous-derived silk fibroin scaffolds,
within 3 weeks the majority of MSCs were embedded in
lacunae-like spaces and acquired a spherical morphology,
which has been found to be essential for the synthesis of
ECM components related to cartilage tissue [168]. In the
presence of inducers like dexamethasone and TGF-b3, the
proliferation of MSCs peaked at 7–9 days and switched to
a more actively differentiating stage. Within 3 weeks, the
MSCs expressed high levels of cartilage-related ECM
transcripts (Col-II, aggrecan (AGC), Col-X, and Col-II/
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Col-I ratio) and deposited an ECM rich in Col-II protein
and sulfated proteoglycans as evaluated by histology and
immunohistochemistry. Although Col-I mRNA expression
was appreciable, Col-I protein was non-detectable
throughout the MSC-silk scaffold constructs at the end
of 3 week’s cultivation. No calcium deposition occurred in
all 3D cultures as evaluated by von Kossa staining,
confirming the absence of osteogenesis. These results
confirmed the presence of a specific chondrogenesis under
the cultivation conditions. A rather homogeneous cell and
ECM distribution was achieved thanks to the unique
features of these aqueous-derived scaffolds including a
rough, hydrophilic surface and an excellent pore inter-
connectivity [166,167] (Fig. 4). By week 3, the MSCs-silk
fibroin scaffold constructs acquired a unique zonal
structure with a thin, dense outer layer containing cells of
fibroblastic morphology enclosing an intermediate zone
and a deep inner zone composed of smaller cells with a
more spherical morphology embedded in lacunae-like
space in the abundant cartilaginous ECM. The distribution
of Col-II protein in the 3D constructs also showed a zonal
pattern with more protein deposited in the outer regions,
an architecture similar to native articular cartilage tissue.

In a more recent study, Wang et al. combined adult
human chondrocytes (hCHs) with aqueous-derived porous
silk fibroin scaffolds (pore size �550 mm) for in vitro
cartilage tissue engineering and the results were compared
with the previous study using MSCs and the same scaffolds
[166]. The hCHs were isolated from adult normal articular
tissues and expanded in monolayer culture in the presence
of 1 ng/mL TGF-b1, 10 ng/mL of platelet-derived growth
factor BB (PDGF-BB) and 5 ng/mL basic fibroblast
growth factor (bFGF) [169]. After cell seeding, hCHs
attached to, proliferated and redifferentiated in the
scaffolds based on cell morphology, expression of carti-
lage-related gene transcripts, and the presence of a
cartilage-like extracellular matrix rich in GAGs and Col-
II. Compared to MSCs, hCHs attached more slowly on
aqueous silk fibroin 2D films and 3D scaffolds. Cell density
was found critical for the differentiation of culture-
expanded hCHs in the 3D aqueous-derived silk fibroin
scaffolds. Significant levels of cartilage-related transcripts
(AGC, Col-II, Sox 9 and Col-II/Col-I ratio) were
upregulated, and uniform deposition of cartilage-specific
extracellular matrix components (Col-II and GAGs) were
observed, in hCH-silk fibroin scaffold constructs seeded at
higher cell densities than observed for the MSC-based
constructs. In addition, the hCH-based constructs were
significantly different than MSC-based constructs with
respect to cell morphology and zonal structure. Almost all
hCHs in the porous silk fibroin scaffolds acquired a
spherical morphology after 3 weeks of cultivation. This
work diversifies cell sources for silk fibroin-based tissue
engineering applications. The results suggest fundamental
differences between stem cell-based (MSC) and primary
cell-based (hCH) tissue engineering outcomes, as well as
the importance of suitable scaffold features in the
optimization of cartilage-related features. Collectively,
these studies demonstrate the potential of porous 3D silk
fibroin scaffolds in autologous cell-based cartilage tissue
engineering.

7. Conclusions

The wide range of molecular structures, remarkable
mechanical properties, morphology control, versatile pro-
cessability and surface modification options make silk
fibroin an attractive polymeric biomaterial for design,
engineering and processing into scaffolds for applications
in controlled drug delivery, guided tissue repair and
functional tissue engineering. 3D porous or fiber silk
fibroin scaffolds with surface morphology, useful mechan-
ical features, biocompatibility, and ability to support cell
adhesion, proliferation, and differentiation have expanded
silk-based biomaterials as promising scaffolds for engineer-
ing a range of skeletal tissues like bone, ligament, and
cartilage as well as connective tissues like skin. The
generally slow rates of degradation of silk fibroin in vivo,
coupled with the versatile control of structure, morphology
and surface chemistry, offer a range of utility for this
family of protein polymers in many needs in biomaterials
and tissue engineering. In addition, since these structures
can be sterilized by autoclaving or ethylene oxide
treatment, suitable options are available to prepare the
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materials for in vivo studies. To date most of the impact
with silk-based biomaterials has been with only one source
of silk, the fibroin from B. mori silkworm. As new sources
of silk proteins become available, such as from spiders and
via genetic engineering and modification of native silk
sequence chemistries, the range of material properties can
be generated and utilized for biomaterials can be expected
to further expand options and lead to additional medical
impact. For example, genetically engineered nanocompo-
sites of spider silk with mineralizing domains have recently
been described and offer new mechanical properties as well
as interfacial properties, along with osteoconductivity or
osteoinductivity depending on design [170]. Future direc-
tions to improve the incorporation and delivery of cell
signaling factors via the aqueous processing modes
available during the formation of silk biomaterial matrices,
or to induce vascular networks in silks in vivo, will further
enhance impact for this family of protein biomaterials.
Finally, hybrid or composite systems with other biopoly-
mers offer novel options to match complex mechanical and
biological functions with tissue-specific needs.
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